Right-invariant metrics on diffeomorphisms groups with applications to diffeomorphic image registration.

François-Xavier Vialard

Joint work with Colin Cotter, Marc Niethammer, Laurent Risser, Alain Trouvé.

University Paris-Dauphine

October 4th 2013
Outline

1. Introduction to Large Deformation by Diffeomorphisms Metric Mapping (LDDMM)
2. Higher-order models
3. Statistics on initial momenta
4. Another right-invariant metrics
Motivation

- Developing geometrical and statistical tools to analyse biomedical shapes distributions/evolutions,
- Developing the associated numerical algorithms.
Example of problems of interest

Given two shapes, find a diffeomorphism of \mathbb{R}^3 that maps one shape onto the other

Different data types and different way of representing them.

Figure: Two slices of 3D brain images of the same subject at different ages
About Computational Anatomy

Old problems:

1. to find a framework for registration of biological shapes,
2. to develop statistical analysis in this framework.

Action of a transformation group on shapes or images
Idea pioneered by Grenander and al. (80’s), then developed by M.Miller, A.Trouvé, L.Younes.

Figure: deforming the shape of a fish by D’Arcy Thompson, author of *On Growth and Forms* (1917)

New problems like study of Spatiotemporal evolution of shapes within a diffeomorphic approach
A Riemannian approach to diffeomorphic registration

Several diffeomorphic registration methods are available:

- Free-form deformations B-spline-based diffeomorphisms by D. Rueckert
- Log-demons (X. Pennec et al.)
- Large Deformations by Diffeomorphisms (M. Miller, A. Trouvé, L. Younes)

Only the last one provides a Riemannian framework.

- $v_t \in V$ a time dependent vector field on \mathbb{R}^n.
- $\phi_t \in \text{Diff}$, the flow defined by

$$\partial_t \phi_t = v_t(\phi_t). \tag{1}$$

Action of the group of diffeomorphism G_0 (flow at time 1):

$$\Pi : G_0 \times C \rightarrow C,$$

$$\Pi(\phi, X) \equiv \phi.X$$

Right-invariant metric on G_0: $d(\phi_{0,1}, \text{Id})^2 = \frac{1}{2} \int_0^1 |v_t|^2_V \, dt$.

→ Strong metric needed on V

(Mumford and Michor: Vanishing Geodesic Distance on...
Left action and right-invariant metric

Definition (Left action)

A left action for the group G is a map $G \times M \to M$ satisfying

1. $\text{Id} \cdot q = q$ for $q \in M$.
2. $g_2 \cdot (g_1 \cdot M) = (g_2 g_1) \cdot q$.

Example: The group on itself, $GL_n(\mathbb{R})$ acting by multiplication on \mathbb{R}^n.

Definition (Right-invariant length)

Let G be a Lie group and $\| \cdot \|$ a scalar product on its Lie algebra $\mathfrak{g} := T_{\text{Id}}G$. Let $g(t)$ be a C^1 path on the group. The length of the path $\ell(g(t))$ can be defined by:

$$
\ell(g(t)) = \int_0^1 \| \partial_t g(t) g(t)^{-1} \|^2 \, dt. \quad (2)
$$

Note that $v(t) = \partial_t g(t) g(t)^{-1} \in \mathfrak{g}$. This is called right-trivialized velocity.
Left action and right-invariant metric

Definition (Right-invariant metric)

Let $g_1, g_2 \in G$ be two group elements, the distance between g_1 and g_2 can be defined by:

$$d^2(g_1, g_2) = \inf_{g(t)} \left\{ \int_0^1 \| \partial_t g(t) g(t)^{-1} \|^2 dt \mid g(0) = g_1 \text{ and } g(1) = g_1 \right\}$$

Minimizers are called geodesics.

Right-invariance simply means:

$$d^2(g_1 g, g_2 g) = d(g_1, g_2).$$

It comes from:

$$\partial_t (g(t)g_0)(g(t)g_0)^{-1} = \partial_t g(t)g_0g_0^{-1}g(t)^{-1} = \partial_t g(t)g(t)^{-1}.$$
Euler-Poincaré equation

Compute the Euler-Lagrange equation of the distance functional:

\[
\frac{\partial L}{\partial g} - \frac{d}{dt} \frac{\partial L}{\partial \dot{g}} = 0
\]

With a change of variable, let’s do ”reduction” on the Lie algebra: Special case of \(\int_0^1 L(g, \dot{g}) dt = \int_0^1 \ell(v(t), Id) dt \).

\[
(\partial_t + \text{ad}^*_v) \frac{\partial \ell}{\partial v} = 0.
\]

Proof.

Compute variations of \(v(t) \) in terms of \(u(t) = \delta g(t)g(t)^{-1} \). Find that admissible variations on \(g \) can be written as: \(\delta v(t) = \dot{u} - \text{ad}_v u \) for any \(u \) vanishing at 0 and 1. Recall that \(\text{ad}_v u = [u, v] \).
Let’s formally apply this to the group of diffeomorphisms of \(\mathbb{R}^d \) with a metric \(\langle u, v \rangle = \langle u, Lv \rangle_{L^2} \). Denoting \(m = Lu \),

\[
\partial_t m + Dm. u + Du^T.m + \text{div}(u)m = 0. \tag{3}
\]

For example, the \(L^2 \) metric gives:

\[
\partial_t m + Du. u + Du^T.u + \text{div}(u)m = 0. \tag{4}
\]

On the group of volume preserving diffeomorphisms of \((M, \mu)\) with the \(L^2 \) metric:

Euler’s equation for ideal fluid where \(\text{div}(u) = 0 \)

\[
\partial_t u + \nabla_u u = -\nabla p,
\]

(\(\text{use } \text{div}(u) = 0 \) and write the term \(Du^T.u \) as a gradient as \(\nabla \|u\|_{L^2} \))

Other equations: Camassa-Holm equation, Hunter-Saxton equation...
Left action and momentum map

Suppose that the action is transitive and a submersion at identity, if \(g(0) = \text{Id} \)

\[
\nu \in \mathfrak{g} \rightarrow \nu \cdot q := \frac{d}{dt} \bigg|_0 g(t) \cdot q
\]

surjective. Define a Riemannian metric on \(TM \) by:

\[
\|\delta q\|^2 = \inf_{\nu \in \mathfrak{g}} \{ \|\nu\|^2 | \nu \cdot q = \delta q \}.
\]

Definition

Let \(p \in T_q^* M \) be a co-tangent vector at \(q \) then the momentum map is

\[
J : T^* M \rightarrow \mathfrak{g}^*
\]

\[
(q, p) \rightarrow \langle J(q, p), \nu \rangle_{\mathfrak{g}} = (p, \nu \cdot q)
\]
A Riemannian framework on the orbit

Proposition

Right-invariant metric + left action \Rightarrow Riemannian metrics on the orbits. The map $\Pi_{q_0} : G \ni g \mapsto g \cdot q_0 \in Q$ is a Riemannian submersion.

Proposition

The inexact matching functional

$$ J(v) = \int_0^1 |v_t|^2_V \, dt + \frac{1}{\sigma^2} d(\phi_1 \cdot q_0, q_{\text{target}})^2 $$

leads to geodesics on the orbit of A for the induced Riemannian metric.
Optimal control viewpoint

Move q_0 in order to minimize $\frac{1}{2} \int_0^1 \| v \|^2 dt + \frac{1}{2} \| q(1) - q_{\text{target}} \|^2$ under the constraint $\dot{q} = v \cdot q$.

Pontryagin principle implies extremals are solutions of:

\begin{align*}
\dot{q} &= v \cdot q \\
\dot{p} &= -v^* \cdot p \\
L v &= J(q, p).
\end{align*}

and $p(1) + \partial_q [\frac{1}{2} \| q - q_{\text{target}} \|^2](q(1)) = 0$.

Proposition

$J(q, p)$ satisfies the EPDiff equation.
Matching problems in a diffeomorphic framework

1. \(U \) a domain in \(\mathbb{R}^n \)
2. \(V \) a Hilbert space of \(C^1 \) vector fields such that:
 \[
 \|v\|_{1,\infty} \leq C|v|_V.
 \]

\(V \) is a Reproducing kernel Hilbert Space (RKHS): (pointwise evaluation continuous)

\(\implies \) Existence of a matrix function \(k_V \) (kernel) defined on \(U \times U \) such that:
 \[
 \langle v(x), a \rangle = \langle k_V(., x)a, v \rangle_V.
 \]

Right invariant distance on \(G_0 \)

\[
\begin{align*}
\exp(\text{Id}, \phi)^2 &= \inf_{v \in L^2([0,1], V)} \int_0^1 |v_t|^2_V dt,
\end{align*}
\]

\(\rightarrow \) geodesics on \(G_0 \).
Matching problems in a diffeomorphic framework

Action of G_0 on group of points (Landmarks):

$$
\phi.(x_1, \ldots, x_k) = (\phi(x_1), \ldots, \phi(x_k))
$$

Momentum map: $\sum_{i=1}^{k} \delta_{\phi(x_i)}^p$.

Action of G_0 on images ($I \in L^\infty(U)$):

$$
\phi.I = I \circ \phi^{-1}.
$$

Momentum map: $J(I, P) = -P \nabla I$.

Action of G_0 on surfaces:

$$
\phi.S = \phi(S)
$$

Action on measures:

$$(\phi.\mu, f) \doteq (\mu, f \circ \phi)$$

Generalized to currents (linear form on $\Omega^k_c(\mathbb{R}^d)$) and varifolds.
Inexact matching: taking noise into account

Minimizing

\[J(v) = \frac{1}{2} \int_0^1 |v_t|^2 dt + \frac{1}{2\sigma^2} d(\phi_{0,1}A, B)^2. \]

In the case of landmarks:

\[J(\phi) = \frac{1}{2} \int_0^1 |v_t|^2 dt + \frac{1}{2\sigma^2} \sum_{i=1}^k \|\phi(x_i) - y_i\|^2, \]

In the case of images:

\[d(\phi_{0,1}I_0, I_{\text{target}})^2 = \int_U |I_0 \circ \phi_{1,0} - I_{\text{target}}|^2 dx. \]

Existence of minimizers: weak convergence in \(L^2([0, 1], V) \) \(\Rightarrow \) uniform convergence of the flow (on compact sets).
Numerical solutions

How to numerically compute a solution? Steepest gradient descent on:

1. $L^2([0,1], V)$, i.e. the functional \mathcal{J} itself,
2. the subspace of Euler-Lagrange solutions.

Gradient of

$$
\mathcal{J}(v) = \frac{1}{2} \int_0^1 |v_t|^2 V dt + \frac{1}{2\sigma^2} \int_U |l_1 - l_{target}|^2 dx .
$$

under the constraint $\partial_t l(t) + \langle v, \nabla l \rangle = 0$.

Introduce Lagrange multipliers:

$$
\mathcal{J}(v) = \frac{1}{2} \int_0^1 |v_t|^2 V dt + \frac{1}{2\sigma^2} \int_U |l_1 - l_{target}|^2 dx + \int_0^1 P(t) (\partial_t l_t + \langle v, \nabla l \rangle) dt .
$$

The gradient is given by:

$$
\nabla \mathcal{J}(v)(t) = v(t) + K \ast (P(t) \nabla l(t))
$$

$$
\partial_t l(t) + \langle v, \nabla l \rangle = 0
$$

$$
\partial_t P + \nabla \cdot (Pv) = 0
$$

$$
P(1) + \frac{1}{2\sigma^2} (l_1 - l_{target}) = 0 .
$$
Shooting methods

Reduction of the functional J to Euler-Lagrange solutions:
The matching functional can be rewritten on the geodesic flow as:

$$S(P(0)) = \frac{\lambda}{2} \langle \nabla I(0) P(0), K \star \nabla I(0) P(0) \rangle_{L^2} + \frac{1}{2} \| I(1) - J \|^2_{L^2}. \tag{8}$$

with:

$$\begin{cases}
\partial_t I + v \cdot \nabla I = 0, \\
\partial_t P + \nabla \cdot (vP) = 0, \\
v + K \star (P \nabla I) = 0.
\end{cases} \tag{9}$$
Experiments

Figure: Registered segmented cortex out of MR images of pre-born babies at 33 and 36 weeks of gestational age, denoted by G_{33} and G_{36} respectively. (Top) Slices out of the segmented images. (Bottom) Internal face of the volumetric images surface.
Practical issues

Main issues for practical applications:

- choice of the metric (prior): mixture of Gaussian kernels:

\[K(x, y) = \sum_{i=1}^{n} \beta_i e^{-\frac{||x-y||^2}{\sigma_i^2}} \]

(10)

- choice of the similarity measure.

Ad-hoc solutions for the first problem: Mixture of Gaussian kernels:
Link with optimal transport

L^2 distance on the group of diffeomorphisms + left action on densities \implies Riemannian submersion. Minimization of:

$$\int_0^1 \| \partial_t \phi \|^2_{L^2(\rho_0)} dt = \int_0^1 \int_M \| v(x) \|^2 \rho(x) dx \, dt$$

under the constraint: $\rho_1 = \phi_*(1)(\rho_0)$.

Geodesic equations:

$$\begin{cases}
\dot{\rho} + \nabla \cdot (\rho \nabla P) = 0 \\
\dot{P} + \frac{1}{2} |\nabla P|^2 = 0
\end{cases} \quad (11)$$

For LDDMM:

- Due to smoothness, disjoint orbits of measures.
- No convexity.
- No scale invariance.
Why does the Riemannian framework matter?

Generalizations of statistical tools in Euclidean space:

- Distance often given by a Riemannian metric.
- Straight lines \rightarrow geodesic defined by

 \[
 \text{Variational definition: } \mathop{\arg\min}_{c(t)} \int_{0}^{1} \| \dot{c}(t) \|_{c(t)}^{2} \, dt = 0 ,
 \]

 \[
 \text{Equivalent (local) definition: } \nabla_{\dot{c}} \dot{c} = \ddot{c} + \Gamma_{i,j}(\dot{c}, \dot{c}) = 0 .
 \]

- Average \rightarrow Fréchet/Kärcher mean.

 \[
 \text{Variational definition: } \mathop{\arg\min}_{x} \{ x \rightarrow E[d^{2}(x, y)]d\mu(y) \}
 \]

 \[
 \text{Critical point definition: } E[\nabla_{x}d^{2}(x, y)]d\mu(y)] = 0 .
 \]

- PCA \rightarrow Tangent PCA or PGA.
- Geodesic regression, cubic regression... (variational or algebraic)

 Riemannian metric needed, or at least a connection.

Pitfalls:

- Loose uniqueness of geodesic or average (positive curvature).
- Equivalent definitions diverge (generalisation of PCA).
Kärcher mean on 3D images

Figure: Average image estimates $A_i^m, m \in \{1, \cdots, 4\}$ after $i = 0, 1, 2$ and 3 iterations.
Bayesian interpretation

The prior in the functional

\[\mathcal{J}(v) = \int_0^1 |v_t|^2 dt + \frac{1}{\sigma^2} d(\phi_{0,1}, A, B)^2 \]

suggests a white noise in time for generic evolutions.

\[\text{Figure: } \text{Kunita flows} \]

→ Not realistic for evolutions of biological shapes.
Interpolating sparse longitudinal shape data

What we aim to do:

Within a diffeomorphic framework:

Let \((S_{t_0}^i, \ldots, S_{t_n}^i)_{i \in [1,n]}\) be a \(n\)–sample of shape sequences indexed by the time \((t_0^i, \ldots, t_n^i) \subset [0, 1]\).

Having in mind biological shapes, at least two problems

- To find a deterministic framework to treat each sample. (in which space to study these data?)
- To develop a probabilistic framework to do statistics. (classification into normal and abnormal growth)
A natural attempt

How to interpolate a sequence of data \((S_0, \ldots, S_{t_k})\) (images, surfaces, landmarks \ldots)

When \(k = 1 \rightarrow\) standard registration problem of two images:
Geodesic on a diffeomorphism group - LDDMM framework
(M.Miller, A.Trouvé, L.Younes, F.Beg,\ldots)

\[
\mathcal{F}(v) = \frac{1}{2} \int_0^1 \|v_t\|^2_V \, dt + \|\phi_1 \cdot S_0 - S_{t_1}\|^2,
\]

\[
\begin{align*}
\phi_0 &= Id \\
\dot{\phi}_t &= v_t(\phi_t).
\end{align*}
\]

(12)

Extending it to \(k > 1\),

\[
\mathcal{F}(v) = \frac{1}{2} \int_0^{t_k} \|v_t\|^2_V \, dt + \sum_{j=1}^k \|\phi_{t_j} \cdot S_0 - S_{t_j}\|^2,
\]

\(\Rightarrow\) piecewise geodesics in the group of diffeomorphisms
Illustration on 3D images

Figure: Slices of 3D volumic images: 33 / 36 / 43 weeks of gestational age of the same subject.
How to smoothly interpolate longitudinal data

In the Euclidean space:

Figure: Sparse data from a sinus curve

Minimizing the L^2 norm of the speed \rightarrow piecewise linear interpolation
What is acceleration in our context?

First attempt, on the group in the matching functional:

\[
\mathcal{F}(\nu) = \frac{1}{2} \int_0^1 |\nu_t|^2_V \, dt + |\phi_1.S_0 - S_{t_1}|^2 ,
\]

(13)

Replace the \(L^2 \) norm of the speed:

\[
\frac{1}{2} \int_0^1 |\nu_t|^2_V \, dt
\]

(14)

by the \(L^2 \) norm of the acceleration of the vector field:

\[
\frac{1}{2} \int_0^1 \left| \frac{d}{dt} \nu_t \right|^2_V \, dt + |\phi_1.S_0 - S_{t_1}|^2 ,
\]

(15)

Null cost for this norm \(\rightarrow \nu_t \equiv \nu_0: \text{Incoherent} \)
Correct notion of acceleration

Acceleration on a Riemannian manifold M: let $c : I \to M$ be a C^2 curve. The notion of acceleration is:

$$\frac{D}{dt} \dot{c}(t) = \nabla \dot{c} \ddot{c} = \ddot{c} + \sum_{i,j} \dot{c}_i \Gamma_{i,j}^k \dot{c}_j$$ \hspace{1cm} (16)

with ∇ the Levi-Civita connection.

Riemannian splines: Crouch, Silva-Leite (90’s)

On $SO(3)$

$$\inf_c \int_0^1 \frac{1}{2} |\nabla \dot{c} \dot{c}_t|^2_M dt.$$ \hspace{1cm} (17)

subject to $c(i) = c_i$ and $\dot{c}(i) = v_i$ for $i = 0, 1$.

Elastic Riemannian splines:

$$\inf_c \int_0^1 \frac{1}{2} |\nabla \dot{c} \dot{c}_t|^2_M + \frac{\alpha}{2} |\dot{c}_t|^2_M dt.$$ \hspace{1cm} (18)

subject to $c(i) = c_i$ and $\dot{c}(i) = v_i$ for $i = 0, 1$.
A modeling question

The Euler-Lagrange equation for Riemannian cubics is

\[\nabla^3 \dot{c} + R(\nabla \dot{c}, \dot{c}) \dot{c} = 0, \tag{19} \]

where \(R \) is the curvature tensor of the metric.

Remarks

If \(\pi : M \mapsto B \) is a Riemannian submersion then:

geodesics lift to geodesics.

Probably not true for Riemannian cubics . . .

In our context of a group action, \(G \times M \mapsto M \):
\(\Pi_{q_0} : G \ni g \mapsto g \cdot q_0 \in Q \) is a Riemannian submersion

Question

Higher-order on the group (upstairs) or higher-order on the orbit (downstairs)?
The convenient Hamiltonian setting

Hamiltonian equations of geodesics for landmarks:

\[
\begin{align*}
\dot{p} &= -\partial_q H(p, q) = -[J(q, p)^\#]^* \cdot p \\
\dot{q} &= \partial_p H(p, q) = J(q, p)^\# \cdot q
\end{align*}
\]
(20)

with \(H(p, q) = H(p_1, \ldots, p_n, q_1, \ldots, q_n) = \frac{1}{2} \sum_{i,j=1}^{n} p_i k(q_i, q_j) p_j \)

and \(k \) is the kernel for spatial correlation.

Lemma

On a general Riemannian manifold,

\[
\nabla_{\dot{q}} \dot{q} = K(q)(\dot{p} + \partial_q H(p, q))
\]
(21)

where \(\dot{q} = K(q)p \) with \(K(q) \) being the identification given by the metric between \(T_{q}^*Q \) and \(T_q Q \).
Splines on shape spaces

We introduce a forcing term u as:

\[
\begin{align*}
\text{Perturbed geodesics} & \quad \begin{cases}
\dot{p}_t = -\partial_q H(p_t, q_t) + u_t \\
\dot{q}_t = \partial_p H(p_t, q_t)
\end{cases} \quad (22)
\end{align*}
\]

Definition (Shape Splines)

Shape splines are defined as minimizer of the following functional:

\[
\inf_u J(u) = \frac{1}{2} \int_0^{t_k} \|u_t\|_X^2 \, dt + \sum_{j=1}^k \|q_{t_j} - x_{t_j}\|_2^2. \quad (23)
\]

subject to (q, p) perturbed geodesic through u_t for a freely chosen norm $\| \cdot \|_X$ on T_q^.***
Simulations

Figure: Comparison between piecewise geodesic interpolation and spline interpolation

- Matching of 4 timepoints from an initial template.
- $| \cdot |_X$ is the Euclidean metric.
- Smooth interpolation in time.
Information contained in the acceleration and extrapolation

Figure: On each row: two different examples of the spline interpolation. In the first column, the norm of the control is represented whereas the signed normal component of the control is represented in the second one. The last column represents the extrapolation.
Robustness to noise

Due to the spatial regularisation of the kernel:

- Left: no noise.
- Center: standard deviation of 0.02.
- Right: standard deviation of 0.09.

Figure: Gaussian noise added to the position of 50 landmarks
A generative model of shape evolutions
A stochastic model:

Theorem

If k is C^1, the solutions of the stochastic differential equation defined by

$$
\begin{align*}
 dp_t &= -\partial_x H_0(p_t, x_t) dt + u_t(x_t) dt + \varepsilon(p_t, x_t) dB_t \\
 dx_t &= \partial_p H_0(p_t, x_t) dt.
\end{align*}
$$

(24)

are non exploding with few assumptions on u_t and ε.

Figure: The first figure represents a calibrated spline interpolation and the three others are white noise perturbations of the spline interpolation with respectively $\sqrt{n} \varepsilon$ set to 0.25, 0.5 and 0.75.
Simple PCA on the forcing term

Figure: Top row: Four examples of time evolution reconstructions from the observations at 6 time points (not represented here) in the learning set. Bottom row: The simulated evolution generated from a PCA model learn from the pairs \((p^k_0, u^k)\). The comparison between the two rows shows that the synthetised evolutions from the PCA analysis are visually good.
Higher-order using optimal transport?

Acceleration is (formally?) defined by:

\[\nabla \dot{\rho} \dot{\rho} = -\nabla \cdot [\rho (v + (v, \nabla)v)], \tag{25} \]

where \(v \) is the horizontal lift associated with \(\dot{\rho} \). Recall that

\[H(\rho, n) = \frac{1}{2} \langle \nabla p, \nabla p \rangle_{L^2(\rho)} = \frac{1}{2} \int_M |\nabla p|^2 \rho \, d\mu_0 . \tag{26} \]

From a control viewpoint, we aim at minimizing \(\frac{1}{2} \int_0^1 |u|^2 \, dt \) for the controlled system:

Geodesic equations:

\[
\begin{aligned}
\dot{\rho} + \nabla \cdot (\rho \nabla p) &= 0 \\
\dot{p} + \frac{1}{2} |\nabla p|^2 &= u .
\end{aligned}
\tag{27}
\]

Splines equations:

\[
\begin{aligned}
\dot{\rho} + \nabla \cdot (\rho \nabla p) &= 0 \\
\dot{p} + \frac{1}{2} |\nabla p|^2 &= u \\
P_\rho + \nabla \cdot (\rho \nabla u) &= 0 \\
\dot{P}_p + \nabla \cdot (P_p \nabla p) - \nabla \cdot (\rho \nabla P_\rho) &= 0 \\
\dot{P}_\rho + \nabla P_\rho \cdot \nabla p - \frac{1}{2} |\nabla u|^2 &= 0 .
\end{aligned}
\tag{28} \]
Geodesic regression

\[S(P(0)) = \frac{\lambda}{2} \langle \nabla I(0) P(0), K \star \nabla I(0) P(0) \rangle_{L^2} + \frac{1}{2} \sum_{i=1}^{k} \| I(t_i) - J_i \|_{L^2}^2. \]

(29)

with:

\[
\begin{align*}
\partial_t I + \nu \cdot \nabla I &= 0, \\
\partial_t P + \nabla \cdot (\nu P) &= 0, \\
\nu + K \star (P \nabla I) &= 0.
\end{align*}
\]

(30)
Proposition

The gradient of S is given by:

$$\nabla_{P(0)} S = -\hat{P}(0) + \nabla I(0) \cdot K \star (P(0) \nabla I(0))$$

where $\hat{P}(0)$ is given by the solution the backward PDE in time:

$$\begin{cases}
\partial_t \hat{I} + \nabla \cdot (v \hat{I}) + \nabla \cdot (P \hat{v}) = 0, \\
\partial_t \hat{P} + v \cdot \nabla \hat{P} - \nabla I \cdot \hat{v} = 0, \\
\hat{v} + K \star (\hat{I} \nabla \hat{I} - P \nabla \hat{P}) = 0,
\end{cases} \quad (31)$$

subject to the initial conditions:

$$\begin{cases}
\hat{I}(1) = J - I(1), \\
\hat{P}(1) = 0,
\end{cases} \quad (32)$$
A key point: Integral formulation
Gradient descent based on an integral formulation:

Proposition

Let $I(0), J \in H^2(\Omega, \mathbb{R})$ be two images and K be a C^2 kernel on Ω. For any $P(0) \in L^2(\Omega)$, let (I, P) be the solution of the shooting equations with initial conditions $I(0), P(0)$. Then, the corresponding adjoint equations have a unique solution (\hat{I}, \hat{P}) in $C^0([0, 1], H^1(\Omega) \times H^1(\Omega))$ such that

\[
\begin{align*}
\hat{P}(t) &= \hat{P}(1) \circ \phi_{t,1} - \int_t^1 [\nabla I(s) \cdot \hat{v}(s)] \circ \phi_{t,s} \, ds, \\
\hat{I}(t) &= \text{Jac}(\phi_{t,1}) \hat{I}(1) \circ \phi_{t,1} \\
&+ \int_t^1 \text{Jac}(\phi_{t,s}) [\nabla \cdot (P(s) \hat{v}(s))] \circ \phi_{t,s} \, ds.
\end{align*}
\]

with:

\[
\begin{align*}
\hat{v}(t) &= K \ast [P(t) \nabla \hat{P}(t) - \hat{I}(t) \nabla I(t)], \\
P(t) &= \text{Jac}(\phi_{t,0}) P(0) \circ \phi_{t,0}, \\
I(t) &= I(0) \circ \phi_{t,0},
\end{align*}
\]

where $\phi_{s,t}$ is the flow of $v(t) = -K \ast P(t) \nabla I(t)$.
Numerical examples on points

- First Column: Geodesic Regression
- Second column: Linear Interpolation
- Third Column: Spline Interpolation
Statistics on spatiotemporal data

Data is a collection of temporal sequence of shapes. Example: if small longitudinal changes occur: data on TS

- Define a ”static” template and transport tangent information.
- Riemannian metric on TS (Sasaki metric...). If $(x(t), v(t))$ is a path in TS, the metric is given by $\|\dot{x}\|^2 + \left\|\frac{D}{Dt}v(:= w)\right\|^2$.

$$\nabla_{\dot{x}} w = 0 \quad \text{and} \quad \nabla_{\dot{x}} \dot{x} + R(v, w)\dot{x} = 0. \tag{35}$$

Particular geodesics are given by: geodesics on M and parallel transport on TM.

Need to compare tangent spaces.
Notions of transports

Given an optimal map ϕ that maps A to B:

- Adjoint transport by diffeomorphisms: $v \rightarrow T_{\phi}(v \circ \phi^{-1})$
- Co-adjoint transport by diffeomorphisms:
 $p \in T^*_q M \rightarrow g^{-1*} \cdot p \in T_{g \cdot q} M$. (momentum map equivariant)
- Parallel transport under a connection
Supervised Classification on Stable MCI and Converter MCI

Initial momentums collected for the longitudinal evolution of hippocampus: two time-points per patient.

<table>
<thead>
<tr>
<th>Deformation descriptor</th>
<th>Spec+ Sens</th>
<th>Spec</th>
<th>Sens</th>
<th>NPV</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume difference</td>
<td>1.19</td>
<td>0.78</td>
<td>0.41</td>
<td>0.85</td>
<td>0.30</td>
</tr>
<tr>
<td>Relative volume difference</td>
<td>1.08</td>
<td>0.85</td>
<td>0.23</td>
<td>0.83</td>
<td>0.25</td>
</tr>
<tr>
<td>Local integrated on the whole domain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial momentum, image transport</td>
<td>1.10</td>
<td>0.37</td>
<td>0.73</td>
<td>0.86</td>
<td>0.21</td>
</tr>
<tr>
<td>Initial momentum, density transport</td>
<td>1.15</td>
<td>0.96</td>
<td>0.19</td>
<td>0.84</td>
<td>0.53</td>
</tr>
<tr>
<td>Initial velocity field</td>
<td>1.07</td>
<td>0.46</td>
<td>0.61</td>
<td>0.84</td>
<td>0.20</td>
</tr>
<tr>
<td>Local integrated on a subregion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial momentum, image transport</td>
<td>1.18</td>
<td>0.63</td>
<td>0.55</td>
<td>0.86</td>
<td>0.25</td>
</tr>
<tr>
<td>Initial momentum, density transport</td>
<td>1.27</td>
<td>0.62</td>
<td>0.65</td>
<td>0.89</td>
<td>0.28</td>
</tr>
<tr>
<td>Initial velocity field</td>
<td>0.92</td>
<td>0.79</td>
<td>0.13</td>
<td>0.80</td>
<td>0.11</td>
</tr>
<tr>
<td>Local restricted to a subregion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial momentum, image transport</td>
<td>1.01</td>
<td>0.96</td>
<td>0.05</td>
<td>0.82</td>
<td>0.27</td>
</tr>
<tr>
<td>Initial momentum, density transport</td>
<td>1.01</td>
<td>0.95</td>
<td>0.06</td>
<td>0.82</td>
<td>0.21</td>
</tr>
<tr>
<td>Initial velocity field</td>
<td>0.92</td>
<td>0.77</td>
<td>0.15</td>
<td>0.80</td>
<td>0.13</td>
</tr>
<tr>
<td>Local restricted to a subregion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial momentum, image transport</td>
<td>1.10</td>
<td>0.68</td>
<td>0.42</td>
<td>0.84</td>
<td>0.23</td>
</tr>
<tr>
<td>Initial momentum, density transport</td>
<td>1.17</td>
<td>0.68</td>
<td>0.49</td>
<td>0.85</td>
<td>0.26</td>
</tr>
<tr>
<td>Initial velocity field</td>
<td>0.98</td>
<td>0.38</td>
<td>0.60</td>
<td>0.81</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Local vs global descriptors of hippocampus shape evolution for Alzheimer’s longitudinal population analysis, J.B Fiot et al.
Future directions

- Use of spatially varying metrics.
- Introduction of new Riemannian metrics on shapes for statistics.
H^1 optimal transport?

Geometry of Diffeomorphism Groups, Complete integrability and Geometric statistics by Khesin et al.

1. Right-invariant \tilde{H}^1 metric on M compact descends to a metric on densities.

$$\ell(v) = \int_M \| \nabla \cdot v \|^2 d\mu$$ \hspace{1cm} (36)

2. Dimension 1: H^1 metric descends to a metric on the space of densities:

$$\ell(\rho, v) = \frac{1}{2} \langle \rho v, v \rangle_{L^2} + \frac{1}{2} \langle \frac{1}{\rho} \nabla \cdot v, \nabla \cdot v \rangle_{L^2}$$ \hspace{1cm} (37)
Right-invariant metric and right action on densities.

It gives the Hellinger metric on densities:

$$d_{\dot{H}^1}(\phi, \psi) = d(\phi^* \mu, \psi^* \mu)$$

$$:= \sqrt{\mu(M)} \arccos \left(\frac{1}{\sqrt{\mu(M)}} \int_M \sqrt{\phi^* \mu \psi^* \mu} \, d\mu \right)$$

(38)

- Isometric to an infinite dimensional sphere.
- Flatness when $\mu(M) \to \infty$.
- Connection with the Fischer-Rao metric.